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Received 30 May 2000 and Received in final form 7 September 2000

Abstract. We study the temporal and spatial correlations in a one-dimensional model of a heterogeneous
fault zone, in the presence of viscoelastic effects. As a function of dynamical weakening and of dissipation,
the system exhibits three different “phases”: one in which there are no time correlations between the events,
a second, in which there are “Omori’s law” type temporal correlations, and a third, runaway phase with
quasiperiodic system size events.

PACS. 91.30.Px Phenomena related to earthquake prediction – 62.20.Fe Deformation and plasticity
(including yield, ductility, and superplasticity) – 62.20.Dc Elasticity, elastic constants

1 Introduction

Describing the spatial and temporal distribution of earth-
quake activity has been the foremost aim and most suc-
cessful aspect of earthquake modelling via discerete, non-
linear networks of elastic elements with nearest neighbor
couplings, typically loaded at a constant rate far from
the fault boundary. The Burridge-Knopoff [1] model has
been the forerunner of a series of coarse-grained dynamical
models [2–4], which have firmly established the un-
derstanding of seismic activity within the paradigm of
self-organized criticality [5–7]. These systems exhibit
“subcritical” or “supercritical” deviations [3] from strict
self-similarity due to quenched inhomogeneities, finite
driving velocities, or dissipation.

A phenomenon which, to our knowledge, has not so
far been addressed by dynamical models of the type cited
above, is post-seismic relaxation [8]. It is commonly be-
lieved that viscoelastic relaxation in the immediate post-
seismic period results in a redistribution of the loads, with
delay times of the order of minutes, hours, or days [9].
The modelling of these processes should help us under-
stand such empirical findings as, for example, “Omori’s
Law,” which says that the frequency of occurrence of
“aftershocks” decreases with time elapsed after the “main
shock” as

n(t) ∼ 1
(const.+ t)p

, (1)

where p is usually found to be very close to unity [3,10].
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In this paper, we mimick viscoelastic relaxation by in-
troducing a finite stress transfer velocity into a dynami-
cal model recently studied by Dahmen et al. [13], and we
investigate its effects on the spatio-temporal behaviour of
this simple model. In our coarse grained representation, we
do not claim to model the precise microscopic mechanism
for viscoelasticity, i.e., whether the relatively slow stress
transfer actually comes from multiple brittle processes in
a heterogeneous medium [11] or from coupling to a viscous
layer below the lithosphere [12]. We will simply take the
stress transfer velocity (V ) to be some effective group ve-
locity which governs post-event relaxation in the system
and which is smaller than the velocity of sound [14].

The model we have used as our point of departure
is an infinitely long range (Mean Field) version of the
Ben-Zion and Rice [4] model which has been investigated
both analytically and numerically [13], to reveal the pres-
ence of two different regimes as far as spatial and tempo-
ral distributions are concerned. It has been found, for a
narrow distribution of heterogeneities, in the limit of in-
finitely slow drive, that the phase space can be described
in terms of just two parameters, the dynamical weakening
ε and conservation c, both taking values between 0 and 1.
For c < 1/2 and small ε, the behaviour is critical; this
is the so called Gutenberg-Richter (GR) regime, with a
power law distribution of event sizes. For c > 1/2 and ε
close to unity, one finds a metastable state of two-phase
coexistence, with GR behaviour interrupted by stretches
of quasi-periodic, characteristic (system-size) events, i.e.
“runaway” behaviour.

Clearly, for the purely Abelian models that have so far
been considered [7,13], just the retardation effect com-
ing from the introduction of a finite velocity of stress
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Fig. 1. Schematic phase diagram exhibiting three different
“phases” where, (I) small events delta correlated in time, (II)
small events with Cauchy type time correlations, and (III)
quasiperiodic, system-size runaway events, dominate.

transfer cannot make any difference in the overall statis-
tics, since it does not matter in which sequence the sites
are updated [15]. Therefore, the introduction of spatiality
beyond that embodied in the mean field (infinitely long
range) approximation had to be considered simultane-
ously with the retardation effect. Namely, the interactions
strengths (“spring constants”) were made to depend in-
versely on the distance, in keeping with a one-dimensional
picture of the fault zone.

In this study we therefore consider simultaneously
i) the effect of time delay in the transfer of stress, ii) the
decay of the coupling strength with inverse distance, for
the model of Dahmen et al. [13] in one dimension. We
have moreover considered a slightly different distribution
of heterogeneities.

We find that this new model leads to three distinct
phases. The phase diagram is shown schematically in
Figure 1. The phase space has been probed over a grid
of ∆c = 0.1, for ε = 0, 0.5 and 1. For strongly dissipative
(c near 0) systems with relatively weak “dynamical soft-
ening” effects (ε close to 0) we find a GR-like phase, with
very small events which show a very steep incipient power
law behaviour over a rather narrow range of sizes and then
cut off abruptly, and which display essentially no temporal
correlations. The power spectrum of the event sequence is
white-noise. For intermediate values of these parameters,
the event distribution is similar to the first, however the
power spectrum reveals non-trivial temporal correlations,
a feature not observed by Dahmen et al. [13] in the GR
phase. In the region of c close to unity (strong conserva-
tion) we find quasiperiodic runaway behaviour.

The phenomenology of each of these phases is rather
rich. In regions of strong heterogeneity, one may observe
patches of blocks to slip in unison, pinned at either end
by relatively large threshold stresses, exhibiting quasiperi-
odic behaviour within a sea of power law events. We have
not observed the switching behaviour between coexisting

GR and runaway phases, as reported for the mean field
model [13], but this may be because this would require
prohibitively long simulations in our scheme. The distri-
bution of the accumulated stresses along the fault zone
is both qualitatively and quantitatively similar in all the
three regions, in contrast to the previous findings.

It should be stressed here that our approach is a de-
parture from the usual quest for scale invariant spatial
or temporal distributions. With the introduction of a fi-
nite stress transfer velocity (which we take to be unity),
and a finite driving velocity, we in fact have three well
separated time scales in the problem: That of the driv-
ing velocity (the largest time scale), the viscoelastic time
scale, and the triggering time scale (where slip occurs in-
stantaneously).

The paper is organized as follows. In Section 2, the
precise definition of the model is given. In Section 3, we
report our results for the statistics of the magnitudes in-
tegrated over time scales corresponding to typical event
durations, which should be compared with those in the
infinite stress transfer velocity/zero driving velocity limit.
We then go on to compute temporal and spatial correla-
tion functions for coarse grained events. In Section 4 we
provide a discussion of our findings.

2 The model

We consider a one-dimensional array of finite segments,
or blocks. The local stress τi on the ith block is given, at
time t by

τi(t) =
R∑

r=−R
kr[ui+r(t− r/V )− ui(t)] +K[vt− ui(t)]

(2)

where the range of the interaction, R, is of the order of
the system size, ui(t) is the offset of the ith block in the
direction of the constant driving velocity v, at time t; K is
the effective shear modulus, and kr = k/|r| is the elastic
coupling between blocks separated by a distance r. As long
as all the τi < τs,i, where {τs,i} are randomly distributed
failure stresses, the system is immobile.

The viscoelastic stress relaxation is mimicked by the
delay, r/V , in the transfer of stress. We shall henceforth
set V , the velocity for the stress transfer along the blocks,
to unity. Note that V is not typically the sound veloc-
ity, but some effective group velocity smaller than that of
sound, governing the processes of viscoelastic stress relax-
ation in this coarse grained model [8,14].

The dynamics is defined as follows. If the threshold
value is exceeded at some i, at time t, then

i) The stress at the ith block is reduced by

δτi = τs,i − τa,i, (3)

where the {τa,i} are random arrest stresses.
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ii) The value of the failure stress at the ith block is reset,
until all motion once more ceases, to a “dynamical”
threshold value

τd,i = τs,i − ε(τs,i − τa,i), (4)

where ε parameterizes the dynamical weakening effect.
iii) The stress drop is redistributed, according to

equation (2), so that τi+r is incremented, at the t+|r|th
time step by

δτi+r = cr(τs,i − τa,i) cr =
kr∑

r′ kr′ +K
·

(5)

We may once more define c ≡
∑
r cr, with 0 ≤ c ≤ 1, to

be the parameter which measures the degree of conserva-
tiveness of the system, although it should be noted that
this definition now involves an implicit integral over time
as well as space.

The boundary conditions are fixed, so that u1 = uL ≡
0. At each time step, the stress at all the blocks i is re-
calculated according to equation (2). This means that the
constant drive term Kvt is incremented also.

3 Simulations

Since the finite stress transfer velocity introduces a defi-
nite time scale into the system, which also sets the char-
acteristic time scale of the event duration, one now faces
the problem of having to go to extremely long runs with
a driving velocity which is at least six to seven orders of
magnitude smaller than the latter. The zero driving ve-
locity trick of simply scanning the system for that site
which is closest to slipping and loading all sites by the
missing amount, is no longer appropriate here – one has
to first check that there are no stress “parcels” still on the
way. The actual simulation times get prohibitively large
as a result, and we had to be content with large but finite
ranges of interaction, up to 1/6 the fault size, and with a
one-dimensional fault.

We have simulated the system described in the pre-
ceding section on a grid of 300 blocks, with the range
of interactions going up to R = 50. The distribution of
stress drops δτi = τs,i − τa,i was chosen to have the form
p(x) ∝ x−µ, with µ = 1.2. However, upon finding that ar-
bitrarily large stress drops pinned the edges of finite seg-
ments in the fault and distorted the distribution of event
sizes, we decided to limit the range of the δτ to a width
comparable to those considered in reference [13], namely
0.2. It is generally found that long active fault zones or-
ganize themselves into states with relatively small hetero-
geneity, and our results should be considered in this spirit.

The driving velocity v is taken to be 10−5V in the
simulations reported below. It should be noted that larger
driving velocities result in individual cells exceeding their
threshold values and collapsing independently from their
neighbors, and as a result the system never achieving a
self organized state. With realistic driving velocities of

Fig. 2. Typical time series for the magnitudes M vs. time, for
16 384×128 time steps. (a) in the “Gutenberg-Richter” (small
event) and (b) the runaway regimes. Note the difference in the
vertical scales. Shown are plots for (a) c = 0.16, ε = 0.5; (b)
c = 0.9, ε = 0.5. The driving velocity is v = 10−5 and the shear
modulus K = 1 for this and the following figures.

∼ 10−9 m/s, v = 10−5V corresponds to a stress trans-
fer velocity of ∼ 10−4 m/s. For “block sizes” of ∼ 102

meters setting our lattice spacing, a stress transfer veloc-
ity of V ∼ 10−4m/s corresponds to time steps of duration
106 s.

In Figure 2, we display the typical time series resulting
from plotting the integrated magnitudesM(t) for different
values of the system parameters. These are obtained by
summing over the number of blocks where the threshold
has been exceeded within an interval δt = 128. This value
was chosen as approximately that time interval needed for
a signal originating in the middle of the fault to be able to
reach the edges of the fault. This time-coarse-grained way
of identifying events is in keeping with the way earthquake
data is taken, with the time integral taken over the actual
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Fig. 3. The frequency vs. magnitude plots on a double log-
arithmic scale, for the same set of parameters as (a) and (b)
in Figure 2. The lines are intended as a guide to the eye with
slopes −5.2 and −1.6, respectively.

displacements of the seismographs. Thus, we define,

M(t) =
t+δt∑
t′=t

∑
i

[∆ui(t′)]0, (6)

where the zeroth power of the slip ∆ui(t′) is taken so that
M(t) simply counts the number of slipped blocks within
the time interval δt. The time series M(t) reveal no im-
mediately observable differences between the regions I and
II shown in Figure 1; therefore we have selected only one
set of parameter values to illustrate both these regions
(see Fig. 2a). On the other hand the much larger magni-
tudes observed in the runaway region, and their marked
quasiperiodicity are apparent in Figure 2b.

The regions I and II are also similar in the way the fre-
quency f(M) of events scales with the magnitude M , for
a given binning size δt. In Figure 3, we show the plots of
the frequency f(M) vs. magnitude M in the small event
(the “Gutenberg-Richter” phase found in Ref. [13]) and
in the runaway regime, for the same parameter values

Table 1. Values of the Gutenberg-Richter exponent b in the
different regimes.

Region c ε b

I 0.15 0.5 5.2
II 0.65 0.5 5.2
III 0.9 0.5 1.6

as in Figure 2. The “power law” fits, f(M) ∼ M−b, to
the small event regime (regions I and II) are poor, and
can only be thought of as suggestive; they extend over
too small a range to really signify self–similarity. Notice
that in the “runaway” regime (region III), the magnitudes
cover a wider range; however we do not observe as marked
a “super-criticality,” i.e., a frequency of large events in ex-
cess of a power law size distribution, as has been reported
elsewhere [3,4,18].

Within regions I and II, the Gutenberg-Richter expo-
nent b is sensitive to the driving velocity v and also de-
pends, less strongly, on the parameters c, ε. Here the dis-
tribution is very steep, with b ranging between 4 and 5.
The values obtained are given in Table 1. The “runaway”
regime exhibits much more realistic b values, around 1.5
to 1.6. One should note, moreover, that since the system is
no longer scale invariant, the statistics of the magnitudes
M are also sensitive to the binning size δt, so that the b
values here are only useful for purposes of discriminating
between different regions of the phase space.

The interesting difference between the three regimes
delineated in Figure 1 become apparent in the power
spectra,

S(f) =
∫

dt ei2πftC(t), (7)

where

C(t) =
1
T

∫ T

0

dt′M(t′)M(t′ + t) (8)

is the time-correlation function for the coarse grained mag-
nitudes M(t), where t stands for the number of time in-
tervals δt, for a total time of measurement extending over
a period T .

In Figures 4 and 5 we display linear and semi-
logarithmic plots of the power spectrum in the three dif-
ferent phases. It can be seen in Figure 4a and in a more
pronounced way in the logarithmic plot of the same power
spectrum in Figure 5a that in the “small event” regime I
(panel (a)), the power spectrum is essentially flat, white-
noise like, indicating an absence of correlations between
the earthquakes, i.e., C(t) ∝ δ(t). For intermediate val-
ues of c and ε, i.e., in the small-event region II, however,
we find that superposed upon the white-noise like back-
ground, the upper envelope of the power spectrum displays
a distinctive curve (see Fig. 4b), indicating the presence of
non-trivial temporal correlations. In the runaway region
(region III), we find a markedly different, quasiperiodic
behaviour, as can be see from Figures 4c and 5c. The very
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Fig. 4. Power spectra of the time series of magnitudes, com-
puted for parameter values in the regions I, II, III of the phase
diagram shown in Figure 1. (a) c = 0.16, ε = 0.5, (b) c = 0.72,
ε = 0.5, (c) c = 0.89, ε = 0.5. The data for panels (a) and (c)
are taken over series of 8 192 × 128 time steps. The data in
panel (b) have been averaged over 7 runs of 16 384 × 128 time
steps.

pronounced peak in the power spectrum near the origin
is large enough to suppress all the others; we can see the
other frequencies that are present only in the logarithmic
plot.

In Figure 6, we show the result of taking an inverse
transform of the envelope (roughly the highest points) of
the power spectrum shown in Figure 4b. This crude esti-
mate of the time correlation function is corroborated by a
more careful evaluation, to which we now turn.

We have computed C(t) directly from a time series
of 81 920 time intervals (of 128 steps each). We have nor-
malized the correlation function by (1/T )

∫ T
0
M2(t′)dt′, so

that C(0) = 1. We find that the normalised C(t) can be

Fig. 5. The same power spectra as in Figure 4, on a logarithmic
scale. Panels (a), (b), and (c) belong to the regions I, II, III of
the phase diagram in Figure 1.

Fig. 6. A crude estimate for the time correlation function, from
the inverse Fourier transform of the points in the envelope of
the power spectrum, shown in Figure 4b. The fit is to 1 + 85
(1 + 3t)−1.
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Fig. 7. The time correlation function C(t) in region II of
the phase diagram (c = 0.65, ε = 0.5), computed from
equation (8), over a time series of 81 920 × 128 steps. The
fit is to 0.7 + 0.2(0.66 + t)−1.

fit rather well by a function of the form

C(t) = A+
B

D + t
, (9)

with A = 0.7, B = 1/5, D = 2/3. Our results are shown
in Figure 7.

Note that the time correlation function C(t) measures
the average frequency with which a time lapse t separates
two events, weighted by the magnitude of the events. In
another way of saying the same thing, it is the weighted
average of the number of times that one registers pairs of
events separated by a time lapse equal to t. If there is no
event taking place at time t + t′ after an event at time
t′, i.e., if M(t′) 6= 0, but M(t + t′) = 0, there will be no
contribution to the integral for C(t) in (8).

We would like to recall, at this point, Omori’s Law (1)
for the frequency of aftershocks [3,10]. Actually, geophysi-
cists are generally hesitant to label a given shock as either
an “aftershock” or “main shock,” and admit that these
are conventional distinctions, which are difficult to make
precise in a quantitative way. Viewed in this way, Omori’s
law is just a statement of the relative frequency of pairs
of events separated by a time t, and is a slightly cruder
version of the time correlation function. We see that the
form we find for the time-decay of the correlation func-
tion matches that of Omori’s Law, with a power p = 1, as
found for real earthquake statistics.

From Figure 7, and equation (9), we see that C(t)−A
drops by a factor of 1/2 within one time interval (consist-
ing of 128 time steps). Since we have already estimated
the time steps here to correspond to about 106 seconds,
this means correlations times of the order of 108 s, namely
∼ 3 yrs, which is quite realistic for the time interval in
which aftershocks die away after a big event.

Fig. 8. The probability density of the fraction s of the slipping
stress (see text) computed along the fault zone, for c = 0.89,
ε = 0.5 (region III). The histogram is averaged over 20 snap-
shots, separated by 5 × 104 timesteps. The figures for regions
I and II are indistinguishable from this one.

To investigate the spatial correlations in the system,
we first considered the distribution of the fraction of the
slipping stress on each block,

si ≡
τs,i − τi
〈τs,i − τa,i〉

, (10)

along the fault zone. This is a quantity in which one might
have expected a greater self-organization building up as
one goes from region I to region III in the phase diagram,
yet we did not find this to be the case. In contrast to
reference [13], in the present model the distribution p(s)
remains essentially invariant in all the three regions, and
has the shape shown in Figure 8. Similarly, we found that
the equal time spatial correlations 〈sisi+r〉 between the
fraction of the slipping stresses accumulated at each site,
showed essentially delta function behaviour in all three
regions, with the correlations never extending beyond next
nearest neighbors. On the other hand, defining the coarse
grained toppling variables

mc(t, i) ≡
t+δt∑
t′=t

[∆ui(t′)]0, (11)

and setting mc(i) = 0 at sites beyond the boundaries of
the fault we found that the correlation function

Cm(r) =
〈mc(t, i)mc(t, i+ r)〉 − 〈mc(t, i)〉2

〈mc(t, i)〉2
, (12)

where the averages are performed both over i and t, indeed
displayed markedly different behaviour in region III, in
comparison to I and II. Our results are shown in Figure 9.
The time averages were performed over 60 snapshots,
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Fig. 9. The spatial correlations between toppling events coarse
grained in time, in the regions I and III of the phase diagram.
(a) c = 0.16, ε = 0.5, (b) c = 0.89, ε = 0.5. The plot for
c = 0.54, ε = 0.5 (in region II) looks identical to panel (a).
Averages have been taken over 60 snapshots separated by time
intervals of 50,000 steps.

Fig. 10. Semilogarithmic plot of the spatial correlations in
region III. The slope of the straight line fit gives a correlation
length of 30 lattice units, or equivalently, 3× 103 meters.

taken at intervals of 5 × 104 timesteps. The correlations
are negligible (of the order of 10−4) in the first two re-
gions, whereas, in region III, one sees a gradual decay. A
straight line fit to the semilogarithmic plot (Fig. 10) sug-
gests an exponential decay and gives a correlation length
of 30 lattice units, corresponding to ∼ 3× 103 meters.

4 Discussion

The inclusion of viscoelastic effects into the study of crack
propagation and pinned driven systems has recently made
important progress [16,17], and promises to be fruit-
ful also in the modeling of earthquakes. The most im-
portant outcome of introducing viscoelastic effects is to
be found in the more subtle temporal correlations be-
tween events; for highly dissipative systems the correla-
tions are delta function like, whereas for intermediate val-
ues of the dissipation, one observes correlations that decay
as ∼ (const. + t)−1 between events, which is of the form
of Omori’s Law (1). To our knowledge, this is the first
demonstration of how Omori’s Law may arise in such a
system.

Our preliminary findings indicate that, due to vis-
coelastic effects, the runaway phase (region III) of
quasiperiodic events in the present model of a heteroge-
neous fault zone is pushed to a relatively smaller region of
the phase diagram (see Fig. 1) than found previously [13]
and the frequency distribution in this phase displays scale
invariance over a sizable region of event sizes. We have
verified that this region is distinguished by relatively long
range spatial correlations between slipping events, in con-
trast to the “small event” regimes.

It has been remarked before[3,18] that various system-
dependent features, notably dynamical weakening and dis-
sipation, introduce time and length scales into the problem
and take the system away from criticality. We would like to
remark that one may reverse the emphasis here to say that
rather than the scaling region of the Gutenberg-Richter
regime, one should examine the sub – or super – critical
behaviour to characterise a specific fault zone. In partic-
ular, we have shown that determining the nature of the
space and time-correlations in the system gives important
clues as to the relative degree of dissipation or dynamical
weakening.
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